On the dual code of points and generators on the Hermitian variety H(2n+1, q2)
نویسندگان
چکیده
We study the dual linear code of points and generators on a nonsingular Hermitian variety H(2n + 1, q2). We improve the earlier results for n = 2, we solve the minimum distance problem for general n, we classify the n smallest types of code words and we characterize the small weight code words as being a linear combination of these n types.
منابع مشابه
Generating Symplectic and Hermitian Dual Polar Spaces over Arbitrary Fields Nonisomorphic to F2
Cooperstein [6], [7] proved that every finite symplectic dual polar space DW (2n− 1, q), q 6= 2, can be generated by ( 2n n ) − ( 2n n−2 ) points and that every finite Hermitian dual polar space DH(2n − 1, q2), q 6= 2, can be generated by (2n n ) points. In the present paper, we show that these conclusions remain valid for symplectic and Hermitian dual polar spaces over infinite fields. A conse...
متن کاملConstant Rank-Distance Sets of Hermitian Matrices and Partial Spreads in Hermitian Polar Spaces
In this paper we investigate partial spreads of H(2n− 1, q2) through the related notion of partial spread sets of hermitian matrices, and the more general notion of constant rank-distance sets. We prove a tight upper bound on the maximum size of a linear constant rank-distance set of hermitian matrices over finite fields, and as a consequence prove the maximality of extensions of symplectic sem...
متن کاملThe Hermitian variety H(5,4) has no ovoid
The Hermitian variety H(5, 4) has no ovoid Jan De Beule Department of Pure Mathematics and Computer Algebra Ghent University Krijgslaan 281, S22 B 9000 Gent Belgium ([email protected], http://cage.ugent.be/∼jdebeule) (joint work with Klaus Metsch) We consider the Hermitian varieties H(2n + 1, q). An ovoid O is a set of points of H(2n + 1, q) such that every generator of H(2n + 1, q) meets ...
متن کاملOn codewords in the dual code of classical generalized quadrangles and classical polar spaces
In [8], the codewords of small weight in the dual code of the code of points and lines of Q(4, q) are characterized. Using geometrical arguments, we characterize the codewords of small weight in the dual code of the code of points and generators of Q(5, q) and H(5, q). For the dual codes of the codes of Q(5, q), q even, and Q(4, q), q even, we investigate the codewords with the largest weights....
متن کاملFunctional codes arising from quadric intersections with Hermitian varieties
We investigate the functional code Ch(X) introduced by G. Lachaud [10] in the special case where X is a non-singular Hermitian variety in PG(N, q2) and h = 2. In [4], F. Edoukou solved the conjecture of Sørensen [11] on the minimum distance of this code for a Hermitian variety X in PG(3, q2). In this paper, we will answer the question about the minimum distance in general dimension N , with N <...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. in Math. of Comm.
دوره 8 شماره
صفحات -
تاریخ انتشار 2014